Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 10(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38667637

RESUMEN

Low-quality cotton fibers, often overlooked as low-value materials, constitute a marginalized waste stream in the cotton industry. This study endeavored to repurpose these fibers into mulch gel films, specifically exploring their efficacy in covering moisture-controlled soil beds. Through a meticulously designed series of processing methods, cellulose/glycerol film was successfully fabricated by regenerating cellulose hydrogels in N,N-dimethylacetamide/lithium chloride solutions, followed by plasticization in glycerol/water solutions and hot pressing. The film was then employed to cover soil beds for a duration of up to 252 days, followed by soil burial assessments. Despite expectations of degradation, the film maintained structural integrity throughout the soil covering period but underwent complete biodegradation after 80 days of soil burial, thereby completing a closed carbon cycle. Intriguingly, both tensile strength and modulus exhibited no diminishment but instead increased after soil covering, contrary to expectations given the usual role of degradation. Mechanistic insights revealed that the removal of glycerol contributed to the mechanical enhancement, while microbial activity predominately decomposed the amorphous regions in soil covering and targeted the crystalline portions in soil burial, elucidating the main biodegradation mechanisms. In summary, this study presents, for the first time, the potential of upcycling low-quality cotton fibers into high-value mulch gel films for agricultural practices within a closed carbon cycle.

2.
Int J Biol Macromol ; 266(Pt 2): 131287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565367

RESUMEN

In the quest to enhance the performance of natural fiber-reinforced polymer composites, achieving optimal dispersion of fiber materials within a polymeric matrix has been identified as a key strategy. Traditional approaches, such as the surface modification of natural fibers, often necessitate the use of additional synthetic chemical processes, presenting a significant challenge. In this work, taking poly (acrylonitrile-styrene-acrylic) (ASA) and bamboo fiber (BF) as a model system, we attempt to use the elastomer-chlorinated polyethylene (CPE) as a compatibilizer to tailor the mechanical properties of ASA/CPE/BF ternary composites. It was found that increasing CPE content contributed to more remarkable reinforcing efficiency, where composite with 15 phr CPE exhibited a nearly four-fold increase in reinforcing efficiency of tensile strength (20 %) compared with that of composite system without CPE (4.1 %). Such improvement was ascribed to the compatibilizing effect exerted by CPE, which prevented the aggregation of BF within polymeric matrix. Surface properties suggested the stronger interface between CPE and BF compared to that between ASA and BF and thereby contributed to the compabilizing effect. Since no chemical process was involved, it is suggested that the introduction of elastomer to be a universal, green and sustainable approach to achieve the reinforcement.


Asunto(s)
Resinas Acrílicas , Polietileno , Polietileno/química , Resinas Acrílicas/química , Resistencia a la Tracción , Acrilonitrilo/química
3.
Sci Rep ; 14(1): 6921, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519540

RESUMEN

In this study, the biodegradability of cellulose films was evaluated in controlled-moisture soil environments. The films were prepared from low-quality cotton fibers through dissolution in DMAc/LiCl, casting, regeneration, glycerol plasticization, and hot-pressing. Two soil burial degradation experiments were conducted in August 2020 (11th August to 13th October) and March 2021 (24th March to 24th July) under controlled moisture conditions to assess the biodegradation behavior of cellulose films. The films were retrieved from soil beds at seven-day intervals, and morphological and physicochemical changes in the films were investigated. The results indicated that the cellulose films exhibited gradual changes starting on Day 7 and major changes after Day 35. Stereomicroscopy images showed the growth and development of fungal mycelia on the surface of the films, and FTIR spectroscopy confirmed the presence of biomolecules originating from microorganisms. The tensile strength and elongation of cellulose films were significantly reduced by 64% and 96% in the first experiment and by 40% and 94% in the second experiment, respectively, during the degradation period. Degradation also significantly impacted the thermal stability (14% and 16.5% reduction, respectively, in the first and second studies) of the films. The cellulose-based films completely degraded within 63 days in late summer and 112 days in spring. This study demonstrates that, unlike synthetic plastics, films prepared from low-quality cotton fibers can easily degrade in the natural environment.


Asunto(s)
Celulosa , Suelo , Celulosa/química , Resistencia a la Tracción , Plásticos , Ambiente Controlado
4.
Molecules ; 28(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687210

RESUMEN

Bleached and cationized cotton fabrics were chemically modified with reactive organoselenium compounds through the nucleophilic aromatic substitution (SNAr) reaction, which allowed for organo-selenium attachment onto the surface of cotton fabrics via covalent bonds and, in the case of the cationized cotton fabric, additional ionic interactions. The resulting textiles exhibited potent bactericidal activity against S. aureus (99.99% reduction), although only moderate activity was observed against E. coli. Fabrics treated with reactive organo-selenium compounds also exhibited fungicidal activities against C. albicans, and much higher antifungal activity was observed when organo-selenium compounds were applied to the cationized cotton in comparison to the bleached cotton. The treatment was found to be durable against rigorous washing conditions (non-ionic detergent/100 °C). This paper is the first report on a novel approach integrating the reaction of cotton fabrics with an organo-selenium antimicrobial agent. This approach is attractive because it provides a method for imparting antimicrobial properties to cotton fabrics which does not disrupt the traditional production processes of a textile mill.


Asunto(s)
Antiinfecciosos , Compuestos de Selenio , Selenio , Antiinfecciosos/farmacología , Candida albicans , Escherichia coli , Ácido Hipocloroso , Selenio/farmacología , Staphylococcus aureus , Textiles
5.
Carbohydr Polym ; 299: 120140, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36876763

RESUMEN

Superabsorbent hydrogels (SAH) are crosslinked three-dimensional networks distinguished by their super capacity to stabilize a large quantity of water without dissolving. Such behavior enables them to engage in various applications. Cellulose and its derived nanocellulose can become SAHs as an appealing, versatile, and sustainable platform because of abundance, biodegradability, and renewability compared to petroleum-based materials. In this review, a synthetic strategy that reflects starting cellulosic resources to their associated synthons, crosslinking types, and synthetic controlling factors was highlighted. Representative examples of cellulose and nanocellulose SAH and an in-depth discussion of structure-absorption relationships were listed. Finally, various applications of cellulose and nanocellulose SAH, challenges and existing problems, and proposed future research pathways were listed.

6.
J Microbiol Methods ; 202: 106598, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243231

RESUMEN

Selenium covalently bonded to cellulose can catalyze the formation of superoxide radicals. Candida albicans, colonizes epithelial surfaces and can be a fatal infection in immunocompromised people. In this study, we demonstrated the ability of organo-selenium, covalently attached to cotton textile dressings to kill C. albicans biofilms.


Asunto(s)
Candida albicans , Selenio , Humanos , Selenio/farmacología , Celulosa/farmacología , Polímeros , Antifúngicos/farmacología , Biopelículas , Vendajes
7.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296604

RESUMEN

The utilization of cellulose to its full potential is constrained by its recalcitrance to dissolution resulting from the rigidity of polymeric chains, high crystallinity, high molecular weight, and extensive intra- and intermolecular hydrogen bonding network. Therefore, pretreatment of cellulose is usually considered as a step that can help facilitate its dissolution. We investigated the use of microwave oxygen plasma as a pre-treatment strategy to enhance the dissolution of cotton fibers in aqueous NaOH/Urea solution, which is considered to be a greener solvent system compared to others. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Powder X-ray Diffraction analyses revealed that plasma pretreatment of cotton cellulose leads to physicochemical changes of cotton fibers. Pretreatment of cotton cellulose with oxygen plasma for 20 and 40 min resulted in the reduction of the molecular weight of cellulose by 36% and 60% and crystallinity by 16% and 25%, respectively. This reduction in molecular weight and crystallinity led to a 34% and 68% increase in the dissolution of 1% (w/v) cotton cellulose in NaOH/Urea solvent system. Thus, treating cotton cellulose with microwave oxygen plasma alters its physicochemical properties and enhanced its dissolution.


Asunto(s)
Celulosa , Microondas , Celulosa/química , Hidróxido de Sodio/química , Solubilidad , Polvos , Fibra de Algodón , Solventes , Urea/química , Oxígeno
8.
Environ Res ; 215(Pt 1): 114242, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36067842

RESUMEN

Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.


Asunto(s)
Quitosano , Fibroínas , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Zeína , Albúminas , Alginatos , Colorantes , Gelatina , Queratinas , Lignina , Oxidación-Reducción , Óxidos , Almidón , Aguas Residuales , Contaminantes Químicos del Agua/química
9.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807226

RESUMEN

The isolation of chitin utilizing ionic liquid 1-ethyl-3-methylimidazolium acetate has been determined to result in polymer contaminated with proteins. For the first time, the proteins in chitin extracted with ionic liquid have been quantified; the protein content was found to vary from 1.3 to 1.9% of the total weight. These proteins were identified and include allergenic proteins such as tropomyosin. In order to avoid 'traditional' hydroxide-based deproteinization of chitin, which could reduce the molecular weight of the final product, alternative deproteinization strategies were attempted. Testing of the previously reported deproteinization method using aqueous K3PO4 resulted in protein reduction by factors varying from 2 to 10, but resulted in significant phosphate salt contamination of the final product. Contrarily, the incorporation of GRAS (Generally Recognized as Safe) compound Polysorbate 80 into the polymer washing step provided the polymer of comparable purity with no contaminants. This study presents new options for the deproteinization of chitin that can replace traditional approaches with methods that are environmentally friendly and can produce high purity polymer.


Asunto(s)
Quitina , Líquidos Iónicos , Peso Molecular , Polímeros , Proteínas
10.
Carbohydr Polym ; 289: 119408, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483831

RESUMEN

The study evaluated the effect of cryogrinding, a relatively new, cost-effective, and sustainable mechanical treatment method, on physicochemical properties of two different micronaire (3.6- and 5.3-) cotton fiber cellulose. Native (type I), mercerized (type II), and acidulated cellulose were subjected to cryogrinding for 48 and 96 min, and their physicochemical properties were investigated. The results demonstrated that cryogrinding resulted in partial amorphization of native and mercerized celluloses, particle size decrease, and a slight reduction of T50%. Importantly, degree of polymerization (DP) of native cellulose reduced significantly: more than two-fold after 12 cycles and more than three-fold after 24 cycles of cryogrinding. No difference in properties was found between 3.6- and 5.3-micronaire cellulose. Advantageous impacts of cryogrinding found in this work will help signify the potential of this technique in cellulose processing and enable the identification of areas for future development.


Asunto(s)
Celulosa , Fibra de Algodón , Celulosa/química , Polimerizacion
11.
Langmuir ; 38(9): 2763-2776, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35212551

RESUMEN

Sporopollenin shells isolated from natural pollen grains have received attention in translational and applied research in diverse fields of drug delivery, vaccine delivery, and wastewater remediation. However, little is known about the sporopollenin shell's potential as an adsorbent. Herein, we have isolated sporopollenin shells from four structurally diverse pollen species, black walnut, marsh elder, mugwort, and silver birch, to study protein adsorption onto sporopollenin shells. We investigated three major interfacial properties, surface area, surface functional groups, and surface charge, to elucidate the mechanism of protein adsorption onto sporopollenin shells. We showed that sporopollenin shells have a moderate specific surface area (<12 m2/g). Phosphoric acid and potassium hydroxide treatments that were used to isolate sporopollenin shells from natural pollen grains also result in the functionalization of sporopollenin shell surfaces with ionizable groups of carboxylic acid and carboxylate salt. As a result, sporopollenin shells exhibit a negative ζ potential in the range of -75 to -82 mV at pH 10 when dispersed in water. The ζ potentials of sporopollenin shells remain negative in the pH range of 2.5-11, with the absolute value of ζ potential showing a decrease with the decrease in pH. The negative surface charge promotes the adsorption of protein onto the sporopollenin shell via electrostatic interaction. Despite having a moderate surface area, sporopollenin shells adsorb a significant amount of lysozyme (145-340 µg lysozyme per mg of sporopollenin shells). Lysozyme adsorption onto sporopollenin shells alters the surface, and the surface charge becomes positive at acidic pH. Overall, this study demonstrates the potential of sporopollenin shells to adsorb proteins, highlights the critical role of sporopollenin shell's interfacial properties in protein adsorption, and identifies the mechanism of protein adsorption on sporopollenin shells.


Asunto(s)
Muramidasa , Adsorción , Biopolímeros , Carotenoides , Concentración de Iones de Hidrógeno , Propiedades de Superficie
12.
Polymers (Basel) ; 13(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34960895

RESUMEN

As the most abundant natural polymer, cellulose is a prime candidate for the preparation of both sustainable and economically viable polymeric products hitherto predominantly produced from oil-based synthetic polymers. However, the utilization of cellulose to its full potential is constrained by its recalcitrance to chemical processing. Both fundamental and applied aspects of cellulose dissolution remain active areas of research and include mechanistic studies on solvent-cellulose interactions, the development of novel solvents and/or solvent systems, the optimization of dissolution conditions, and the preparation of various cellulose-based materials. In this review, we build on existing knowledge on cellulose dissolution, including the structural characteristics of the polymer that are important for dissolution (molecular weight, crystallinity, and effect of hydrophobic interactions), and evaluate widely used non-derivatizing solvents (sodium hydroxide (NaOH)-based systems, N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl), N-methylmorpholine-N-oxide (NMMO), and ionic liquids). We also cover the subsequent regeneration of cellulose solutions from these solvents into various architectures (fibers, films, membranes, beads, aerogels, and hydrogels) and review uses of these materials in specific applications, such as biomedical, sorption, and energy uses.

13.
Polymers (Basel) ; 13(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34641248

RESUMEN

Petroleum-based synthetic plastics play an important role in our life. As the detrimental health and environmental effects of synthetic plastics continue to increase, the renewable, degradable and recyclable properties of cellulose make subsequent products the "preferred environmentally friendly" alternatives, with a small carbon footprint. Despite the fact that the bioplastic industry is growing rapidly with many innovative discoveries, cellulose-based bioproducts in their natural state face challenges in replacing synthetic plastics. These challenges include scalability issues, high cost of production, and most importantly, limited functionality of cellulosic materials. However, in order for cellulosic materials to be able to compete with synthetic plastics, they must possess properties adequate for the end use and meet performance expectations. In this regard, surface modification of pre-made cellulosic materials preserves the chemical profile of cellulose, its mechanical properties, and biodegradability, while diversifying its possible applications. The review covers numerous techniques for surface functionalization of materials prepared from cellulose such as plasma treatment, surface grafting (including RDRP methods), and chemical vapor and atomic layer deposition techniques. The review also highlights purposeful development of new cellulosic architectures and their utilization, with a specific focus on cellulosic hydrogels, aerogels, beads, membranes, and nanomaterials. The judicious choice of material architecture combined with a specific surface functionalization method will allow us to take full advantage of the polymer's biocompatibility and biodegradability and improve existing and target novel applications of cellulose, such as proteins and antibodies immobilization, enantiomers separation, and composites preparation.

14.
Molecules ; 26(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361855

RESUMEN

Synthetic dyes have become an integral part of many industries such as textiles, tannin and even food and pharmaceuticals. Industrial dye effluents from various dye utilizing industries are considered harmful to the environment and human health due to their intense color, toxicity and carcinogenic nature. To mitigate environmental and public health related issues, different techniques of dye remediation have been widely investigated. However, efficient and cost-effective methods of dye removal have not been fully established yet. This paper highlights and presents a review of recent literature on the utilization of the most widely available biopolymers, specifically, cellulose, chitin and chitosan-based products for dye removal. The focus has been limited to the three most widely explored technologies: adsorption, advanced oxidation processes and membrane filtration. Due to their high efficiency in dye removal coupled with environmental benignity, scalability, low cost and non-toxicity, biopolymer-based dye removal technologies have the potential to become sustainable alternatives for the remediation of industrial dye effluents as well as contaminated water bodies.


Asunto(s)
Quitosano/química , Colorantes/química , Industria Textil , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Humanos
15.
Sci Rep ; 11(1): 3643, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574461

RESUMEN

The use of plant-based biomaterials for tissue engineering has recently generated interest as plant decellularization produces biocompatible scaffolds which can be repopulated with human cells. The predominant approach for vegetal decellularization remains serial chemical processing. However, this technique is time-consuming and requires harsh compounds which damage the resulting scaffolds. The current study presents an alternative solution using supercritical carbon dioxide (scCO2). Protocols testing various solvents were assessed and results found that scCO2 in combination with 2% peracetic acid decellularized plant material in less than 4 h, while preserving plant microarchitecture and branching vascular network. The biophysical and biochemical cues of the scCO2 decellularized spinach leaf scaffolds were then compared to chemically generated scaffolds. Data showed that the scaffolds had a similar Young's modulus, suggesting identical stiffness, and revealed that they contained the same elements, yet displayed disparate biochemical signatures as assessed by Fourier-transform infrared spectroscopy (FTIR). Finally, human fibroblast cells seeded on the spinach leaf surface were attached and alive after 14 days, demonstrating the biocompatibility of the scCO2 decellularized scaffolds. Thus, scCO2 was found to be an efficient method for plant material decellularization, scaffold structure preservation and recellularization with human cells, while performed in less time (36 h) than the standard chemical approach (170 h).


Asunto(s)
Materiales Biocompatibles/química , Dióxido de Carbono/química , Células Vegetales/química , Andamios del Tejido/química , Matriz Extracelular/química , Humanos , Ingeniería de Tejidos
16.
Carbohydr Polym ; 221: 63-72, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31227168

RESUMEN

During the past decade, ionic liquids (ILs) have attracted increasing attention as efficient, novel solvents for dissolving cellulose. In this study, 1-butyl-3-methylimdazolium methylphosphonate ([C4C1im][(OMe)(H)PO2]) was used in the dissolution of cotton cellulose and the role of 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, and 1-butylimidazole as co-solvents was investigated. The progress of the dissolution was monitored using polarized light microscopy (PLM) and the regenerated cellulose was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The effect of 1-alkylimidazoles as co-solvents in cellulose dissolution was examined in terms of the basicity (hydrogen-bond acceptor capability), conductivity, viscosity, and ionicity of the IL and IL/co-solvent mixtures. These studies showed that the addition of 1-alkylimidazole co-solvents enhances cellulose dissolution by the IL and that the role of these co-solvents is mainly to increase mass transport by reducing the viscosity of the mixtures.


Asunto(s)
Celulosa/química , Gossypium/química , Imidazoles/química , Líquidos Iónicos/química , Conductividad Eléctrica , Solubilidad , Viscosidad
17.
ACS Appl Mater Interfaces ; 11(23): 20628-20641, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31082202

RESUMEN

Microcapsules extracted from lycopodium ( Lycopodium clavatum) spores have been increasingly used as an oral therapeutic carrier. A series of sequential treatments involving acetone, KOH, and H3PO4 are used to extract a protein-free hollow microcapsule. This study focuses on two critical aspects of lycopodium spores: the fate of native proteins and the wettability of the spores after a chemical treatment. Protein-free spores are desired to prevent an allergic reaction, whereas the wettability is critical for the formulation development. Although the chemically treated lycopodium spores are generally regarded as protein free, the studies that have reported this have not gone into significant depths to understand the nature of residual nitrogen observed even in spores thought to be protein free. Wettability of spores has not received any significant attention. Accordingly, in this study, we performed a comprehensive analysis of natural spores and spores after each chemical treatment step. We show that natural lycopodium spores are hydrophobic and contain low-molecular-weight proteins (∼10 kD). Acetone treatment partially solubilizes unsaturated phospholipids from the spores. Nevertheless, the acetone-treated spores retain native proteins and are still hydrophobic. KOH treatment, however, removes a significant amount of proteins and partially hydrolyzes esters to carboxylic acid salts and results in a hydrophilic spore with a good wettability. Finally, we show that the H3PO4 treatment removes residual proteins, hydrolyzes remaining esters to carboxylic acids, and dissolves carbohydrates. H3PO4 treatment temperature controls carbohydrate dissolution, which in turn affects the hydroxyl functional groups and hydrophilicity (wettability) of the treated spores. Spores treated at 60 °C as opposed to 160 °C are amphiphilic in nature due to the abundance of hydroxyl functional groups on the surface. In conclusion, this study confirms the removal of native proteins from treated spores and sheds light on the chemical changes that the spores undergo after chemical treatment and correlates these changes to their wettability.


Asunto(s)
Ácidos/química , Lycopodium/química , Compuestos Orgánicos/química , Proteínas de Plantas/química , Solventes/química , Esporas/química , Interacciones Hidrofóbicas e Hidrofílicas
18.
Mater Sci Eng C Mater Biol Appl ; 99: 333-343, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889707

RESUMEN

Bacterial cellulose (BC) is a bio-derived polymer, and it has been considered as an excellent candidate material for tissue engineering. In this study, a crossed groove/column micropattern was constructed on spongy, porous BC using low-energy CO2 laser photolithography. Applying the targeted immobilization of a tetrapeptide consisting of Arginine-Glycine-Aspartic acid-Serine (H-Arg-Gly-Asp-Ser-OH, RGDS) as a fibronectin onto the column platform surface, the resulting micropatterned BC (RGDS-MPBC) exhibited dual affinities to fibroblasts and collagen. Material characterization of RGDS-MPBC revealed that the micropattern was built by the column part with size of ~100 × 100 µm wide and ~100 µm deep, and the groove part with size of ~150 µm wide. Hydrating the MPBC did not result in the collapse of the integrity of the micropattern, suggesting its potential application in a highly hydrated wound environment. Cell culture assays revealed that the RGDS-MPBC exhibited an improved cytotoxicity to mouse fibroblasts L929, as compared to the pristine BC. Meanwhile, it was observed that the RGDS-MPBC was able to guide the ordered aggregation of human skin fibroblast (HSF) cells on the column platform surface, and no HSF cells were found in the groove channels. Over time, it was found that a dense network of collagen was gradually established across the groove channels. Furthermore, the in-vivo animal study preliminarily demonstrated the scar-free healing potential of the micropatterned BC materials. Therefore, this RGDS-MPBC material exhibited its advantages in guiding cell migration and collagen distribution, which could present a prospect in the establishment of "basket-woven" organization of collagen in normal skin tissue against the formation of dense, parallel aggregation of collagen fibers in scar tissue toward scar-free wound healing outcome.


Asunto(s)
Acetobacter/química , Celulosa/química , Cicatriz/patología , Láseres de Gas , Microtecnología/métodos , Impresión/métodos , Cicatrización de Heridas , Animales , Línea Celular , Celulosa/ultraestructura , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Ratones , Oligopéptidos/química , Ratas Sprague-Dawley , Piel/patología , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
19.
Int J Biol Macromol ; 123: 1289-1296, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30342150

RESUMEN

This paper reports on the effect of improved porous characteristics of cellulose on its solubility in DMAc/LiCl. The use of freeze-drying (FD) treatment led to higher surface area and void fraction of volume for high-molecular-weight (HMW) cotton cellulose (DP~5000). Improvement in porous characteristics of cellulose did not change the chemical and crystalline structures of cellulose, as compared to hot-drying (HD) treatment. However, significant improvement in the dissolution of FD-HMW cellulose in DMAc/LiCl was observed under relatively low temperature (80 °C). The relationship between the solubility and the porous characteristics of cellulose was discussed using Stokes-Einstein Equation and effective diffusion coefficient equation. It was concluded that the increase in the diffusion coefficient of the solvent and the improvement in the porous characteristics of cellulose played key roles to enhance the diffusion rate of the solvent through the cellulose molecular network.


Asunto(s)
Celulosa/química , Solventes/química , Adsorción , Desecación , Congelación , Calor , Nitrógeno/química , Porosidad , Reología , Solubilidad , Soluciones , Difracción de Rayos X
20.
J Pharm Sci ; 107(12): 3047-3059, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30096353

RESUMEN

Allergen-free pollen shells obtained from natural pollen grains have recently attracted attention as microcapsules for oral therapeutic delivery. We have recently developed a chemical treatment method that enables successful retrieval of hollow pollen shells from diverse species. A comprehensive characterization is critical to characterize the effects of chemical treatment which will not only benchmark the pollen treatment process but can also lay the foundation of quality control procedures to check allergen-removal efficiency during pollen treatment. Therefore, in this study, we followed the effects of chemical treatment on 4 different pollen species using electron microscopy, elemental analysis, gel electrophoresis, confocal microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. These analyses revealed that acetone treatment removed lipids from the pollen surface. Phosphoric acid treatment removed proteins and nucleic acids from the pollen core and transformed esters into carboxylic acids. Potassium hydroxide hydrolysis changed carbohydrate composition of the pollen wall. Chemically treated pollen shells exhibited hydroxyl and carboxyl functional groups on their surface. Overall, we propose that confocal microscopy could be used as a rapid scanning technique to visualize the removal of biomolecules, whereas Fourier-transform infrared combined with gel electrophoresis could be used as a more objective approach for analysis and benchmarking.


Asunto(s)
Alérgenos/aislamiento & purificación , Portadores de Fármacos/química , Polen/química , Acetona/química , Administración Oral , Animales , Cápsulas/química , Electroforesis en Gel de Poliacrilamida , Humanos , Hidrólisis , Hidróxidos/química , Microscopía Confocal , Ovalbúmina/administración & dosificación , Ácidos Fosfóricos/química , Compuestos de Potasio/química , Espectroscopía Infrarroja por Transformada de Fourier , Vacunas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...